>>
gggfrogramming n n LYCEE
® DES —— ARTS
and game design INPRO?2 ull v METIERS

Silent Specter Documentation

— SILENT
SPECTfR

{ GameBoy

'-:.I:_T |
g e

~ SORTS
VENT BS w' T () nupcort (i)
GameBoy B GAGDLY.

BT

This document contains information regarding the completion of an individual project to
create a classic Game Boy game. This project was conducted by Valentin PATELLA, a
second-year student in the BTS Game Programming & Game Design program at the Lycée
des Arts et Métiers, Luxembourg.

Valentin PATELLA Page1/13

bts >

game programming

LYCEE

. n n DES —— ARTS
and game design INPRO2 uE ET METIERS
Table of contents
GAIME OVEIVIEBW .euiiniiniiiiiiiiiiiii et ettt ettt et et et et et et e s e et saaeaeeaeenneneennas 3

0] o o1 o 1 (PN 3

1] (o] o 2 PP 3

€ 7= o PP 3

BE 1= (C L= [Lo L= o Lo - T PPN 3

L€ 7=1 0 g 1= o1 = Y N 3
COre MECNANICS cuiiiiiiiiiiiiiii ettt s e et e e e e eaeaanas 3
LO70] o1 { £] £ PP 4
WiIN/LOSE CONAITIONS euivniiiiiiiiiiiiiiii ittt e e e e e eaaens 4

L€ 7=1 2 g 1Y) oo} o TSN 4
N T €Y o] F=)Y 21 o 11 U Y N 4
[NV R Vo] U le [T T = o PPN 4
NUMDErs Of LEVELS ...uvuiiiiiiiiiiii 4
NV B oY fo =1 (=TS 1] (o] o F PPN 5

(D I=AVZ=] o] o] 0 1 1= o | PSS 5
MeEChaNICS/FEATUIES ..cuiiiiiiiiiiiiii ittt e e e eas 5
BNy LY gl =1 = | = o [P 5
ENEMIBS e 6
Environmental elementsc.oiiiiiiiiiiiiiii 8
COUECTIDLES ..eniiniiiiiii e 10

(€7 ¢=T ol a1F] o g Fo3r=1 o Lo IF-] o € T 10
AddItioNal FEMAIKS ...vuiiiiiiiiii et e e 11

[T =18 0] o Yo 11 Lo N 11
LG 1T T £ PPN 12
1T 3 12

0] PP PPPRPIN 12
MUSIC ettt ettt ettt et e e et ea et et et s e saasaeeaeenennanns 12
List Of SOftWare USedcuuiiuiiiiiiiiiiiiii i 12
SOME VISUALS ceuiiiiiiiiiiii ittt et et e e et s e e e e e saeaenanas 13
[Ry=f=T 0 a TR o] G (=TT - | o PP 13

Valentin PATELLA

Page2/13

bts >> |
game programming nn L e
and game design INPRO2 sl v METIERS

Game overview

Concept

Story

Silent Specter is a 2D Gameboy Classic game in which you play a little ghost who has
forgotten the reasons for his death. To find answers, he will explore the places he
frequented in life, collecting artifacts and objects from his past. The mystery will unfold
as he gathers these objects.

However, being a ghost is far from easy and risk-free: in its explorations, the ghost must
avoid losing its spectral integrity, which is diminished by attacks from other ghosts.

But ghost life does offer a useful little power: you can pass through certain walls and avoid
attacks from some ghosts using your invisibility!

Genre

Silent Specter is a platformer/puzzle game.

Target audience

The target audience for my game would be 12+. The graphics are neither bloody nor
shocking, but some story parts contain mature topics. However, any player can enjoy my
game, as it is neither easy nor hard.

Gameplay

Core mechanics

In the game, players can perform different actions:
e Jump
e Use invisibility ability

e Move

Valentin PATELLA Page3/13

bts > |
game programming nn L e
and game design INPRO2 sl ET METIERS

Controls

¢ D-pad: move to the left/right (left/right arrows), fall from a platform (down arrow),
interact with level 2 stairs (up arrow).

¢ A button: activate invisibility ability.
e B button: jump.
e START button: Pause Menu.

e SELECT button: open Collectibles Menu.

Win/Lose conditions

The only “win” condition in the game is to complete all the levels. Evenif the player misses
some collectibles, they can complete the game even if they will probably miss some
points in the story.

The “lose” condition is primarily the "disappearance" of the ghost, losing all its spectral
integrity, resulting in a Game Over.

Game loop

The main game loop in Silent Specter is exploring, jump and parkour around diverse
levels, collect objects to understand parts of the story and avoid getting hit by ghost
enemies.

Player replayability

If a player completes the game 100%, meaning they find all the collectibles, the game, in
its essence as an investigation and puzzle game, should not be replayable.

The only reason a player would replay my game would be if they tried to find all the
collectibles they missed during previous sessions.

Level & world design

Numbers of levels

In Silent Specter, the player will have to explore four levels, representing four distinct
places the ghost used to live in when he was alive. Those levels are:

* The House: the ghost house in which he lived.

Valentin PATELLA Page4/13

bts > |
game programming nn L e
and game design INPRO2 mll €T METIERS

* The Shop: the store where the ghost used to shop when he was alive. This level
introduces a new mechanic.

* The Office: The ghost's workplace. Something happened in this place...

* The Hospital: the ghost regularly visited this place, but why?

Level progression

To progress in each level, players will have to explore and find the exit of each level
(located towards the right edge of the level). Triggers are used for the exit, leading to the
next level.

Development

Mechanics/Features

In this section, | will explain how | have developed the mechanics of the game, why some
got added/modified/removed from the original plan, how | have implemented them, etc.

This will not concern the mechanics like basic movements (jumping, move...).

Player related
Invisibility
The ability to become invisible was the only ability | had in mind for the ghost. It made the

most sense in the context of my game and the story. Developing it was not the most
difficult part.

It consists of a boolean value called 'bislnvisible' that changes when the player presses
the A button. This value is notably used to pass through cracked walls or one of the types
of enemies.

This ability was the first one | implemented, and | did not have much difficulty
implementing it. | just had to modify the behavior of the basic A button by attaching a
script to that button.

Health

For the player's life, the basic idea was to have 'spectral integrity', one of the only ways
for me to justify the fact that the ghost could die again.

Valentin PATELLA Page5/13

bts > |
game programming ﬂn LYCEE DEs P
and game design INPRO2 mll €T METIERS

This system consists of a 'Player Health' value which is initialized to 4. Each time an
enemy hit the player, their health will be reduced by 1. Once this value reaches 0, the
ghost 'vanishes' and the death screen is displayed.

For the display of health, | used an actor called HUD_Ghost pinned to the screen (top-
left corner), whose sprite changes according to the value of Player Health.

This feature was quite simple to program, however | had to think about how to manage
the Player Health value during scene changes (especially in the second level), at the
beginning of each level or when the player restarts the game after a death.

The HUD_Ghost is updated using an Update HUD script, which is called whenever the
player's health needs to be modified. This script consists of a switch that executes
specific code based on the Player Health value at the time the scriptis called.

Heal Orb

When implementing the first enemies, | had to think about adding collectibles that
would allow the player to regain integrity. That is why | designed small energy orbs which,
once collected, disappear and restore health (1) to the ghost.

The logic is quite simple, but | had to think about how to responsibly manage the update
of the HUD_Ghost each time a Heal Orb is picked up.

Enemies

Initially, my idea for the development was to create a type of enemy ghost inspired by the
Boos from Mario. Ghosts that would have two behaviors:

* Chase the player when their back is turned.

* Move away from the player when they are looking at the ghost (unlike the Boos
that just stop moving).

| ran several tests to implement this type of enemy, but | could not make it feel natural. |
managed to get the enemy, once on the player's screen, to check if the player was
looking in its direction. However, the ghost would move in the opposite direction from
the player, but once the player changed direction, the ghost would continue moving
away. Also, when the player got close to the enemy, it would get stuck between two
states, causing significant lag.

Ultimately, | decided to remove this type of enemy from the game, but | will keep the idea
in mind for future projects, if the opportunity arises! Butin the end, | decided to pay

Valentin PATELLA Page6/13

bts > |
game programming ﬂn LYCEE DEs P
and game design INPRO2 mll €T METIERS

tribute to this enemy who left too soon by keeping the name Scared Ghost for one of my
enemy types present in the definitive version of the game!

Scared Ghost

This type of enemy relies primarily on the player's ability to become invisible. Indeed, to
avoid being hit by this enemy, the player must be invisible to pass through it.

The player can, however, avoid this enemy by jumping over it (in the spirit of a classic
platformer where there is not just one way to dodge enemies).

In certain sections of levels, it is impossible to avoid this enemy without using invisibility,
forcing the player to carefully time the activation of their power. If a Scared Ghost ever
hits the player, their integrity is reduced by 1. A small cooldown is present to prevent

repeated damage. This enemy's movement is based solely on patrol points towards
which the Scared Ghost moves horizontally. It does not chase the player upon sight.

| decided to create a 'ScaredGhostPatrolling' script which requires as parameters the X
coordinates of the two patrol points and the Y coordinate (the same for both points as |
am only making a horizontal movement). The intention behind this script was to group
the patrol logic that is common to each enemy of this type. | only had to specify the
coordinates of the patrol points for each enemy | placed in my levels. It was also a way
to reduce the lag and the use of ROM associated with the OnUpdate event.

Invisible Ghost

This second type of enemy relies on its ability to transition between invisible and visible
states at intervals. It made sense to give this invisibility ability to another type of enemy
as well.

The player can only pass through this enemy without taking damage when itisinits
'invisible' state.

The programming logic behind this enemy is fairly simple but requires some
adjustments. For the 'invisible/visible' phase system, | use the OnUpdate event, with
Wait statements representing the transition between the enemy's two phases.
Depending on the phase, | change the enemy's sprite. At the transition between the two
phases, | apply a 0.5-second Flicker effect.

Finally, in the OnHit event, | follow the same logic as with my first enemy type, but |
check if the enemy is in the invisible phase (and therefore cannot deal damage) or in the
visible phase (and therefore deals damage). The one small thing | had to pay attention to

Valentin PATELLA Page7/13

bts > |
game programming ﬂn LYCEE DEs e
and game design INPRO2 mll €T METIERS

was when starting the level: the enemy had its sprite representing its invisibility phase
but still caused damage, but | quickly fixed this by setting blsGhostlnvisible to false
Onlnit.

| am satisfied with the two types of enemies present in the definitive version of the game,
even though | had other ideas for enemies besides ghosts, such as:

* Salt placed on the ground (which, according to widespread belief, wards off
ghosts) that would also cause damage to the player. This raised some concerns for me,
particularly regarding the art and lore of the game. As far as art goes, drawing grains of
salt seems easy, but it really did not look good on the Gameboy screen during my tests.
As for the narrative, it did not make much sense; the living people were not fighting
ghosts, and there was not any exorcism story or anything like that.

¢ Incense diffusers: this idea would have allowed me to have an element of the
scenery that would not inflict damage per se on the player but rather a debuff on their
invisibility or movement ability (inability to be invisible or reduction of jump
height/slowing of movement).

Representing this was not a problem, however, the story itself was another issue, as
there was no exorcism or ghost-hunting elementin the various levels.

What would have been most challenging for me was the zone system in which the
incense would have been effective.

One of the mechanics | tried most was reducing the ghost's movement speed by
modifying the WalkVelocity value in GBStudio (using the Engine Field Update event), but
ultimately, once it was reduced, | couldn't reset it to default, or it would decrease in a
loop until there was no movement speed at all when the player was within the zone of
effect.

Environmental elements

Cracked Walls (Invisible Wall)

This element was one of the firstideas | had when thinking about the invisibility system,
allowing the player to pass through walls (as a ghost is supposed to be able to do in
widespread belief). To 'justify’ the fact that some walls were passable, | decided to add
small cracks and holes to their sprites to clearly distinguish the 'solid' walls from the
'passable’ ones.

The wall's logic simply involves detecting the player's collision with the wall (in the OnHit
event) and checking the player's ‘blslnvisible’ variable at the time of the collision. If the

Valentin PATELLA Page 8/13

bts > |
game programming ﬂn LYCEE DEs P
and game design INPRO2 mll €T METIERS

player is invisible, they can pass through the wall (deactivate the collision of the wall);
otherwise, the collision box prevents them.

In the third level, | tried a variation on these walls by rotating them horizontally, but
unfortunately, their collision detection with the player was not working properly,
preventing the player from passing through them correctly. During testing, | could pass
through them from below but not from above. However, to pass through from below, the
player needed very precise timing for the collision to be detected between the two
actors. | tried increasing the wall's collision box, but that did not work very well either, so
| abandoned the idea.

Stairs (Level 2)

In the second level of the game, | introduced the staircase mechanic. The logic behind it
is quite simple: by using the up arrow at one of the staircases, the player is 'teleported'
to another staircase.

The idea behind this mechanic was to create a sense of 'labyrinth' in the level, so that
the player would not really know where they would end up when taking a staircase.

To achieve this result, | override the behavior of the up-arrow key. When the player is
inside a trigger representing the interactive area of the stairs, the variable 'bUseStairs' is
set to true. Pressing the up arrow key teleports the player to the exit staircase (its
coordinates are stored in two global variables, ExitStairsX and ExitStairsY) linked to the
entrance staircase. During this interaction, a script called 'UseStairs' uses GBStudio's
Change Scene event, sending the player to the coordinates of the exit staircase.

One of the issues | had with this system was that the player's health was reset to 4 every
time they used a staircase. This happened because, initially, | was resetting the Player
Health variable to 4 every time a level was launched. This was not a problem until |
implemented the staircase system. To compensate for this, | decided to reset the Player
Health value to 4 only when changing levels (i.e., in the level exit triggers). It was a minor
issue, and | fixed it easily.

Locked Door

| decided to add a locked door system for certain levels. They cannot be passed through
while invisible, forcing the player to find the key within the level, thus encouraging
exploration. Perhaps they don't really make sense in the context of the game, butit's one
of the only ways | have found to force exploration. Once the player retrieves the key
found in the level, the door unlocks (OnHit event) and allows the player to continue. The
logic is roughly the same as invisible walls, but it just checks if the player has the key
and not if they are invisible.

Valentin PATELLA Page9/13

bts > |
game programming ﬂn LYCEE DEs e
and game design INPRO2 mll €T METIERS

Collectibles

Collectibles were also one of the first ideas | had for the game. Small objects that, once
collected, reveal information about the story.

Each time an object is collected, a short dialogue appears on the screen. Once
collected, an objectis visible in the 'Collectibles' screen. Collecting objects is not
mandatory (except for keys), but it really helps the player understand the ghost's story.

If a player does not collect all the objects, it is not a problem; they can still finish the
game. There is no ending based on the number of objects collected. Once anitemis
retrieved, it simply disappears from the level. The idea of having multiple endings

depending on the number of collectibles was in my mind from the start, but | have not
found any suitable ending ideas, but it could be a possibility if | rework the game!

Graphisms and arts

To avoid repeating the same mistakes | made in a previous project, | decided to use free
assets found online. So, | did some research and found assets for GBStudio from
creators on Itch.io. | tried placing them in my levels, until | realized they were not
suitable at all for my game's 2D sideview; many of them were designed for top-down
games.

Ultimately, after noticing this, | decided to create the assets and sprites for the different
characters myself. The effort was clearly reduced, given the limited detail and the small
size of the assets for a Game Boy game. It was particularly good exercise for, let us say,
improving my artistic skills.

However, | still had to decide to use the power of artificial intelligence to generate
certain assets, particularly the various backgrounds for screens like the Home Screen,
Main Menu, and Death Screen.

To create these screens, | asked ChatGPT or Gemini to generate an image in the Game
Boy style, resized these images on a website (https://imageresizer.com/bulk-resize) to

the Game Boy screen size (160x144px), and then used the PixelLab plugin in Aseprite to
modify some details such as the text, the colors used (to match the Game Boy palette),
etc.

To reduce lag and ROM usage, | had to manually reduce the amount of detail in the
background, thus reducing the number of unique tiles. The Collectibles and Controls
screens were made by me (it was pretty simple, obviously). For the sprites and assets,

Valentin PATELLA Page10/13

https://imageresizer.com/bulk-resize

bts > |
game programming ﬂn LYCEE DEs e
and game design INPRO2 mll €T METIERS

everything was created by me, using Aseprite. | specifically used tilesets to arrange the
different elements and generate the map in Tiled.

At the beginning of the project, | researched which color palette to use and the required
asset sizes. Funny enough, at a certain point in development, | forgot that one of the
colors absolutely should not be used for the actor sprites, forcing me to change it for
each sprite, but the change was made very quickly.

Additional remarks

During the game's development, | experienced many moments of doubt and struggle.
One of the main problems was managing ROM memory, unique tiles, and map creation
with Tiled and Aseprite (primarily concerning map size).

Regarding memory management, during development, the debugger in GBStudio
indicated high ROM usage. From the very beginning of the project and the
implementation of the first board and its mechanismes, | had already used almost 100
KiB of ROM. This worried me greatly; | was experiencing significant lag and performance
drops. | think one of the main reasons was using the Platformer+ plugin for GBStudio (to
be confirmed), and that | was using far too many unique tiles at the beginning of
development. As development progressed, realizing that too much detail could be the
cause of these performance losses, | greatly reduced the number of unique tiles!

Finally, at some point, | realized that the OnUpdate events were the main source of lag,
so | made sure to reduce them as much as possible.

| tried my best to minimize ROM usage and | am quite satisfied with the game's
performance. However, in some parts of the levels, the game lags a bit, but strangely, it
is less noticeable on Gameboy than in GBStudio (or in the web version on Itch.io).

To be honest, there was a long period when | could not work on the project and
development stopped for a few weeks, but in the end, once | got back into development,
| was excited to continue and finish the game!

Final product

The final version of the game is available on my itch.io profile! The game fits perfectly for
me, in my vision of a puzzle/mystery game with a story that unfolds as you explore,
through collected objects or even level design and scenery. The game's difficulty is not
too high, making it enjoyable to play and, | think, fits well into this movement of creating
Gameboy games with a modern look, both in terms of art and mechanics!

Valentin PATELLA Page11/13

bts >> |
game programming nn L e
and game design INPRO2 sl v METIERS

I think the game could benefit from additions, perhaps a sequel, with more mechanics
and story! In the end, despite a development process that was sometimes a little
complicated, | am very proud of the product | delivered, and | look forward to the various
comments and reactions of the people who will play it!

Credits

Assets

Mostly created by me, using Aseprite. The main menus and transition screen were
generated by Al and slightly edited by the PixelLab plugin or by me.

SFX

The sounds that can be heard in the game are all from a sound pack created and made
available by Tronimal on itch.io (https://yogi-tronimal.itch.io/gbfx). Thank you to them,
the sounds fit perfectly into the game's world, and the number of sounds available in the

packis impressive!

Music

The two music tracks in the game (one throughout and one during the ending screen)
come from an 8-bit music pack created by Tiptoptomcat on itch.io
(https://tiptoptomcat.itch.io/8-bit-gameboy-songs-gb-studio). This pack was one of the
few (besides other packs by the same artist) that contained sounds in the .mod format
(necessary for use in GBStudio). Thanks to them, the music perfectly matches the
atmosphere | wanted in my game!

| tried converting other music from different packs (.wav to .mod) but it is nearly
impossible, as the .mod format is extremely specific.

List of software used

Art and map:

e Aseprite (with PixelLab integrated plugin)

* Tiled

e ChatGPT or Gemini (for Al-generated screens)
Programmation

e GBStudio (with PlatformerPlus plugin for collision management, additional
platformers functionalities)

Valentin PATELLA Page12/13

https://yogi-tronimal.itch.io/gbfx
https://tiptoptomcat.itch.io/8-bit-gameboy-songs-gb-studio

bts > |
game programming ﬂn LYCEE DEs e
and game design INPRO2 mll €T METIERS

Some visuals

In-game sprites/art

Screens:

TOU ¥AHISHED

SHENT SILENT
SPECTER SPECTER
\ P | > &

- ["'
e

- (Y 0

STHAT GAME |
— a 2

oNTRgL S

il

created by'walentin Patella

PRESS A TO RESTART

Player-related:

Lgme fAL @

Environmental elements:

Enemies:

FaE

Cemetery of idea:

(sl Rl

Valentin PATELLA Page 13/13

	Game overview
	Concept
	Story
	Genre

	Target audience

	Gameplay
	Core mechanics
	Controls
	Win/Lose conditions
	Game loop
	Player replayability

	Level & world design
	Numbers of levels
	Level progression

	Development
	Mechanics/Features
	Player related
	Invisibility
	Health
	Heal Orb

	Enemies
	Scared Ghost
	Invisible Ghost

	Environmental elements
	Cracked Walls (Invisible Wall)
	Stairs (Level 2)
	Locked Door

	Collectibles

	Graphisms and arts
	Additional remarks

	Final product
	Credits
	Assets
	SFX
	Music
	List of software used

	Some visuals
	In-game sprites/art

